
Understanding Version Control as Material Interaction with
Qickpose

Eric Rawn
erawn@berkeley.edu

University of California, Berkeley
Berkeley, California, USA

Eric Paulos
paulos@berkeley.edu

University of California, Berkeley
Berkeley, California, USA

Jingyi Li
jingyili@cs.stanford.edu
Stanford University

Stanford, California, USA

Sarah E. Chasins
schasins@berkeley.edu

University of California, Berkeley
Berkeley, California, USA

Figure 1: Quickpose is a version control system for creative coding designed to support what we term material interaction: how
practitioners engage their materials. A. Quickpose represents versions of a program as circular thumbnails on an interactive
canvas (current version represented with Blue border). B. In this sample canvas, a user placed a textbox with "Keep These
Colors" to annotate the multiple versions nearby. Annotation was one salient aspect of material interaction which we aimed to
support with Quickpose. C. The Quickpose render output shows the current version rendered as an animated image. D. The
Processing IDE shows the code corresponding to the current version. Selecting a new version on the canvas updates the code to
match.

ABSTRACT
Whether a programmer with code or a potter with clay, practition-
ers engage in an ongoing process of working and reasoning with
materials. Existing discussions in HCI have provided rich accounts
of these practices and processes, which we synthesize into three
themes: (1) reciprocal discovery of goals and materials, (2) local

This work is licensed under a Creative Commons Attribution-Share Alike
International 4.0 License.

knowledge of materials, and (3) annotation for holistic interpre-
tation. We then apply these design principles generatively to the
domain of version control to present Quickpose: a version con-
trol system for creative coding. In an in-situ, longitudinal study
of Quickpose guided by our themes, we collected usage data, ver-
sion history, and interviews. Our study explored our participants’
material interaction behaviors and the initial promise of our pro-
posed measures for recognizing these behaviors. Quickpose is an
exploration of version control as material interaction, using exist-
ing discussions to inform domain-specifc concepts, measures, and
designs for version control systems.

CHI ’23, April 23–28, 2023, Hamburg, Germany CCS CONCEPTS
© 2023 Copyright held by the owner/author(s). • Software and its engineering → Software confgurationACM ISBN 978-1-4503-9421-5/23/04.
https://doi.org/10.1145/3544548.3581394 management and version control systems; • Human-centered

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3544548.3581394
mailto:schasins@berkeley.edu
mailto:jingyili@cs.stanford.edu
mailto:paulos@berkeley.edu
mailto:erawn@berkeley.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3581394&domain=pdf&date_stamp=2023-04-19

CHI ’23, April 23–28, 2023, Hamburg, Germany Rawn et al.

computing → Human computer interaction (HCI); • Applied com-
puting → Media arts.

KEYWORDS
End-User Programming, Version Control Systems (VCS), Material-
ity, Variations, Creative Coding

ACM Reference Format:
Eric Rawn, Jingyi Li, Eric Paulos, and Sarah E. Chasins. 2023. Understanding
Version Control as Material Interaction with Quickpose. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems (CHI ’23),
April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3544548.3581394

1 INTRODUCTION
Whether practitioners use clay (for ceramicists), mathematical nota-
tion (for mathematicians), or code (for programmers), they interact
with parts of the world to understand, explore, and create. They
take these parts of the world up as materials. “Material” in this
sense does not describe a certain class of things (like lumps of clay
or pieces of source code), but instead describes an ongoing relation-
ship between a practitioner and what they work with. For example,
the same knife can be activated as a material for a blacksmith but
become an invisible, unnoticed tool when used by a chef. More
nuanced situations might arise with programming; for example,
where a programmer may shift between taking up the code, the
compiler, or the hardware as a material as their attention and the
task ahead shifts. HCI researchers have long studied what it means
to engage something as a material, highlighting its educational [61],
cognitive [43], or creative [75] dimensions. While this relationship
between a practitioner and material has taken many names, this
paper will use the term material interaction to reference this group
of ideas.

In this work, we synthesize these rich accounts of material inter-
action to employ them generatively [2]: to inspire domain-specifc
concepts and novel designs which are built upon broader theoretical
accounts. Therefore, we frst distill and operationalize this broader
HCI discussion of how a practitioner engages their materials into
three themes of material interaction: (i) that goals develop along-
side the engagement of materials (Section 2.1), (ii) that practitioners
build knowledge about materials through exploring and reasoning
with the materials themselves (Section 2.2), and (iii) that practition-
ers contextualize, refect, and organize knowledge about materials
through annotative practices (Section 2.3). Using these preexisting
themes, we propose design principles for material interaction in
interfaces (Section 2.4).

We then apply these principles to a specifc domain to explore
the potential of these themes to suggest novel design insights and
measures [2]. A strong thread in these themes of material inter-
action is in how practitioners move between, compare, or refect
on versions of their work. This made history management prac-
tices [81]—the tools, habits, notation systems, or organizational
practices used to record, recall, and manage the history of project—
an especially interesting site to investigate material interaction in
interfaces. For software engineering, version control systems are
often the tools that manage this history for programmers, and are
a primary way programmers interact with prior versions of their

code. Therefore, we take up version control as a domain within
which our themes could be critical [2] (they could highlight places
existing tools failed to accommodate material interaction) and con-
structive (they could suggest novel design principles, measures, and
implementations). Guided by these themes, we built Quickpose, a
version control system for creative coding. Although material inter-
action encompasses more than just creativity, artists who code are
a group of practitioners who are often refective and experimental
about their process [48], making them a well-suited group to study
initially. We discuss the design of Quickpose, including how the
themes motivated its design, in detail in Section 4.

Through our in-situ study of Quickpose with expert Processing
artists, we used Quickpose as a platform to explore version control
as a material interaction, connecting the existing conversation on
material interaction in HCI to inspire practice-oriented insights
for interface design in version control systems. Using our design
principles, we proposed concrete measures of material interaction
for the domain of version control systems. These measures guided
our quantitative analysis of collected data from Quickpose’s usage
in addition to how we analyzed the qualitative interviews with
participants. Rather than validate the themes presented or evaluate
Quickpose on a specifed task, our study explores (1) how users
engage in material interaction behaviors if their tools ofer the
functionality for doing so, and (2) whether the measures suggested
by the collected themes present initial promise for recognizing such
practices. Additionally, we used our study to iteratively refne and
contextualize the themes and measures we discuss [2, 9] in order
to support future development.

We found evidence for each of our three themes through semi-
structured interviews with participants and analysis of their usage
data, Quickpose canvases, and code versions. For example, naviga-
tion history between disparate versions indicated how practitioners
broadly utilized their version history even in cases where their fork-
ing history showed a more linear behavior. Using the study to
refexively develop our themes and principles, we then propose a
refned set of measures for further research. Finally, we discuss
how our work might contribute to a broader theory of material in-
teraction for interface design, showing how Quickpose served as a
platform for investigating the themes and also how they might help
explain and reason about previous fndings. We present Quickpose
as a generative exploration: using a conceptual lens of material in-
teraction to suggest new ways of building version control systems,
and then using a system built with those guidelines to investigate
material interaction behaviors in practice.

We present the following contributions:
(1) A set of metrics that operationalize the existing conversation

around material interaction. These metrics center our three
design principles of continual goal reformation, contextual
exploration, and holistic, linked annotation.

(2) Quickpose, a version control tool for creative coding, which
supports and measures material interaction in line with our
themes.

(3) A quantitative and qualitative study of Quickpose users to
understand of material interaction behaviors in Quickpose,
with implications for future researchers studying material
interaction in version control systems.

https://doi.org/10.1145/3544548.3581394

Understanding Version Control as Material Interaction with Qickpose CHI ’23, April 23–28, 2023, Hamburg, Germany

2 THREE THEMES OF MATERIAL
INTERACTION

The HCI Community has long been interested in how people take
up, reason with, and subsequently transform the material reality
around them. This is especially true in the case of the practitioner
or artisan, someone who directly manipulates a material as the
core part of their work. Whether the material is code or clay, HCI
researchers have drawn from felds like anthropology [19, 38, 76],
design studies [16, 75], or philosophy [55] to better understand
how practitioners engage their materials. In this section we present
three aspects of this discussion of how HCI researchers have dis-
cussed material interaction. In particular, we argue HCI researchers
have claimed that (i) goals develop in tandem with material en-
gagement (Section 2.1), (ii) practitioners build knowledge about
materials through exploring and reasoning with the materials them-
selves (Section 2.2), and (iii) practitioners contextualize, refect, and
organize knowledge about materials through annotative practices
(Section 2.3). Finally, we distill these themes into design principles
for interfaces (Section 2.4), which structure our construction of
Quickpose both as a tool for facilitating material interaction and
measuring it through the tool itself.

2.1 Reciprocal Discovery of Goals and Materials
In response to working with a material, practitioners’ goals change [17,
87]. Whether it is the desire to express an idea, a design brief to be
fulflled, or a curiosity to be investigated, practitioners approach
materials with a goal, an impulse or motivation which spurs the
interaction.

For example, a programmer is building a user interface (UI) for
an application. In the course of making the UI, the programmer
realizes that all of the buttons planned for the UI make it look
cluttered and difcult to understand. The programmer refnes the
goal in this moment: the goal is now to make a UI where the user
can access all of the functionality, but not necessarily via buttons.
The programmer continues to iterate, hiding some buttons behind
menus and testing the UI until they fnd the right balance between
visual clarity and ease of access—goals that were latent but have
now become explicit priorities. As painter James Elkins writes, “the
work and its maker exchange ideas and change one another” [23,
p. 78].

The example above illustrates how practitioners engage in a
conversational [38] relationship with a material. Practitioners work
out [43, 44], reframe [25, 69], and learn about [61] their goals as
they work with materials—the material “talks back” [75, p. 135].

Working with materials is a process of discovery and exploration
in two ways: frst, because it reveals properties about the materi-
als at hand; second, because those materials change the goal in
surprising ways—working with materials “remakes the idea” [23].
Additionally, working with materials may also cause us to reframe
our goals or unsettle the entire frame by which the goal made sense.
For example, our earlier example programmer might discover in
the course of working out the UI that instead of hiding greater
functionality behind menus, the total functionality of the interface
should have been reduced. On the other hand, perhaps they realize
the UI would be more efective in a diferent paradigm, such as
context menus, at which point the goal would become delivering

the right functionality in the right moment rather than with ease of
access. In either case, the programmer learns something about the
material and their goals which cause the goals to change.

Theme 1: Goals and materials are reciprocally discovered.
Working with materials is a process of continual articulation
instead of dictation.

2.2 Local Knowledge of Materials
In the same way that goals are formulated through working with
a material, practitioners build knowledge about materials locally
through exploration and comparison in context [25, 40, 43, 56, 61].
For example, a graphic designer could explore ten diferent options
for the color on a webpage before settling on one option. Treated
as a material by the designer, the other nine are not ‘failed’ options
but were what provided the context for the designer’s choice: the
variations not only gave the designer insight about the webpage and
color scheme, but they also provided the axes along which a choice
could be made at all (for example, a choice of saturation, or hue).
The material knowledge of “what color fts best in the webpage”
became accessible to the designer through variation of the material
itself (the webpage), and remained largely intuitive or tacit (the
designer might say the color “feels right” or “works well with the
other colors”). Design theorist Donald Schön would describe the
web developer’s exploration as “knowing-in action, revealed in and
by actual designing” [74, p. 131].

This kind of intuitive or tacit knowledge is opposed to abstract
or systematic knowledge, which can be utilized independent of
context [32]. Exploratory behaviors, like the web developer’s here,
are dependent on their context because each variation or experi-
ment is only meaningful for material knowledge in the context of
surrounding variations [47, 58].

Rather than two separate categories then, material knowledge
and systematic knowledge can be seen as two ends of a spectrum,
where practitioners utilize many diferent kinds at once and can,
with efort, systematize previously tacit knowledge. For example,
Moradi et al. [58] describe how ceramicists work with glazes (a
coating for a ceramic piece) through free-form tacit exploration,
incremental trial and error, unstructured annotation of pieces, and
rigorous analysis and variation of a glaze recipe. At each step, the
ceramicist moves away from engaging the clay as a material and
towards a systematic, more scientifc [64] knowledge of it.

Two meaningful dimensions to describe this exploration are
degree (how many variations) and depth (how efortful or multiply-
iterative are the variations) [16, p. 88]. For example, a ceramicist
might tweak the composition of a ceramic glaze across ten other-
wise identical pieces and compare them [58], which would comprise
a low depth but high degree exploration. On the other hand, they
might develop two separate glazes, making changes on each it-
eration and comparing after ten refnements of each glaze. This
could be described as high depth but low degree exploration. This
language helps contextualize both practices as diferent expressions
of a singular underlying phenomena.

Theme 2: Knowledge about materials is built locally through
exploration and comparison. Knowledge about materials be-
gins as tacit, intuitive, or embodied and must be transformed

CHI ’23, April 23–28, 2023, Hamburg, Germany Rawn et al.

if it is to become systematic knowledge. Exploration can vary
in depth and degree.

2.3 Annotation for Holistic Interpretation
In the course of working with a material, practitioners’ knowledge
practices–the activities which surround building and cultivating
knowledge [31]—focus on contextualizing the work rather than
replacing or generalizing it [35, 51, 87]. For example, the ceramicist
who tries ten diferent variations of a glaze might record the partic-
ular ratio on paper attached to each piece. Seeing the ten variations
together allows for comparison, as we discussed earlier, but the
notes attached to each pot help the ceramicist understand how
the variations in the glaze result in diferent appearances. In other
words, the practitioner used annotation to aid their understanding
of an individual state of the material exploration (a single pot) and
also the connections and relationships between the states. Designer
Es Devlin phrases it this way: “...leave traces of your train of thought
... otherwise [it’s difcult] to ... remember what the joints and the
junctions were between one thought and the next, and to me that’s
the really interesting part, fnd the common denominators, fnd the
underlying patterns”[24].

Additionally, the annotations are meaningful specifcally when
linked to the material states they describe; for example, appending a
paper note to a pot, handwriting annotation over a paper essay draft,
or typing notes in a textbox on an fle in an image editor. These
annotations help the practitioner better understand the material
state at hand and would lose their utility if separated from the state.

While not all practitioners use formal annotation systems, knowl-
edge practices around material interaction seem to be annotative,
even with mental notes like a dancer’s practice of marking [43].
By building the context for refection, annotation also supports the
two previous themes, furthering goal development and reframing
alongside knowledge building through comparison.

Theme 3: Knowledge practices in the course of material
interaction are focused on annotation rather than general-
ization; annotation aids interpretation and analysis of both
the individual states of a material exploration and the rela-
tionships between states, but does not replace them.

2.4 Material Interaction: Principles for Design
These three themes—reciprocal discovery, local knowledge of mate-
rials, and holistic annotation—are not meant to be comprehensive
or conclusive accounts of what a material interaction entails. Rather,
they are an attempt to synthesize insights from across the HCI lit-
erature into three practical claims which can support further work,
including the remainder of this paper. In this way, we use existing
accounts of material interaction not as a general theory of material
interaction, but to collect a set of motivating, actionable concepts
which structure and guide our research question and study.

While we do not claim these themes of material interaction to be
complete, these themes are nonetheless tightly woven together: how
we engage materials and act upon them with our intentions, how
we build knowledge about them, and how we transform, record,
and refect on that knowledge are three ways of understanding a
single phenomena, not three distinct practices summed together.

With this in mind, we extend our themes of material interaction
into design principles:

(1) Continual Goal Reformation If goals are discovered along-
side materials, interfaces should support the reformation, bi-
furcation, and demarcation of goals throughout the material
interaction, allowing practitioners to follow their exploration
in however many directions it travels.

(2) Contextual Exploration If knowledge of materials is built
tacitly, interfaces should support exploration and comparison
in the context of other states. Because exploration can be both
low depth, high degree and high depth, low degree, interfaces
should allow practitioners to fexibly compare and explore
across depth and degree.

(3) Holistic, Linked Annotation If knowledge practices with
materials do not replace the state they describe but rather aid
in its interpretation and the refection of the entire material
process, interfaces should support fexible annotation which
accompanies and directly links to states and groups of states.

3 RELATED WORK
In our usage, “material” describes a relationship between a thing
and a practitioner. A material is thus defned by its context of use
by a practitioner. As Sterman et al. [81] discuss in their work on
creative strategies, practitioners’ engagement with materials over
time often manifests through reasoning, working, and refecting
between multiple versions or states, whether wood (diferent itera-
tions of a project or piece), code (versions of a program), or dance
(iterations of a movement or sections of choreography). They fur-
ther defne version control systems as a specifc subset of history
management tools which organize iterative changes to artifacts
themselves. We use these defnitions throughout our related work
to clarify how existing tools, prior studies, and theoretical contri-
butions have discussed material interaction, history management,
and version control.

3.1 Theories of Materiality and Cognition
Theories of materiality have great diversity, but on the whole they
often center the agency, infuence, or impact of the world outside
of a person’s thoughts or perceptions [3]. Many of these theories in
HCI have focused on digital materials – that just as potters mould
clay (and the properties of the clay dictates what can and cannot
be made), so do interface designers with the digital materials of
computer interaction. Wiberg [91] and Jung and Stolterman [40]
emphasize how many interface designers already take up computer
interaction as a material, which is a central premise to Quickpose:
that, by extension, creative coders treat (or could possibly treat)
Processing code (and the output and interaction it generates) as a
material. Wiberg clarifes how digital materials manifest in similar
ways to physical ones, analyzing their properties, textures, and
holistic compositions [90]. Jung and Stolterman similarly address
computer interaction as a material, analyzing how the properties
and cultural meanings which attend computer interactions mani-
fest in the world of materials and culture (what they term "material
ecology") [40]. Where these authors argue for interaction as a ma-
terial, this paper investigates what it means to take something up
as a material at all: how do we interact with materials?

Understanding Version Control as Material Interaction with Qickpose CHI ’23, April 23–28, 2023, Hamburg, Germany

Other theories emphasize the importance of tools (simply put,
objects we interact with for practical ends) in our ability to per-
ceive, understand, refect, and act. Centering the thinking of John
Dewey, Dalsgaard presents a pragmatist conception of tools and
design practice [17], discussing the importance of tools for how we
generate ideas, clarify situations, reason about ideas, and synthe-
size design perspectives together. Other theorists echo this claim
that cognition is a refexive, practical interplay between mind and
world, such as Malafouris’ Material Engagement Theory [53], or Al-
shanetsky’s conception of "articulation" [1]. Chalmers and Clarke
present an "active external[ist]" view of cognition, highlighting
how objects external to the human body or brain play a crucial
role in human thinking and acting [14]. Hutchins [36] also sup-
ports these sentiments with a theory of distributed cognition. This
paper certainly relies on the claim that artifacts can play crucial
roles in our cognition: we could describe material interaction as
not thinking about materials, but thinking through materials. This
sentiment is foundational in Section 2.2. In this paper we build
from these theories of how people think and act to try to propose
themes for interface design – the theories discussed above concern
the nature of the mind, cognition, and practical action, but do not
provide immediate guidance for understanding how interfaces can
support an engagement with materials. For example, if external
objects can aid (or are fundamental to) refection of a design process
(which these authors would claim), what does refection mean in
the context of computer interfaces? How can we recognize it and
explicitly support it in tool design? These are questions we hope to
work towards in this paper.

In a related vein, other scholars discuss externalization [20, 74]
– the manifestation of an idea outside of a mind, in the form of
diagrams, models, notes, or artifacts, as a critical design practice
which enables practitioners to refect on, reason about, and share
their design ideas. These theories are foundational for the design
principles we propose for interfaces. For example, Dix et al. [20]
discuss the importance of summarization, annotation, and tracing
of a design process for meaningful refection. Gedenryd [27] points
out the importance of sketches and "low-fdelity" prototypes, which
they argue ignores the valueable cognitive function of such proto-
types in "working out" design ideas. In this paper, we rely on this
work to investigate how we can explicitly support behaviors like
annotation and sketching in version control systems, in addition to
how we can recognize such behaviors in practice.

3.2 Material Interaction but not Version Control
3.2.1 Understanding and Supporting the Design Process. Design
ideation and creative practice are important domains where prac-
titioners engage materials. Previous research in these areas ofers
critical touchstones which we rely on for our discussion of material
interaction. Prior empirical studies ofer evidence that broad ex-
ploration [21], variation [86], iteration [11], and refection [13] are
valuable parts of a design process. These studies show that these
activities help people achieve better design outcomes, but they do
not propose explanations of why these activities occur when prac-
titioners engage materials, nor how to reason about these activities
in interfaces. For example, in Section 2.1 we argue that iteration,
in part, occurs during a material interaction because practitioners’

goals change in response to working with a material. We then pro-
pose that supporting iteration within material interaction means
supporting the complete reframing, continual refning, and the
splitting and fracturing of goals. This prior empirical work thus
lays the foundation for our design principles and measures.

In addition to these empirical studies, researchers also recom-
mend design principles for supporting creativity with interfaces.
While Quickpose aligns with these guidelines, such as exploration [67],
history-keeping [80], and margin-keeping [26], our goal in this
work is to build practice-oriented recommendations and principles
which help designers reason about why these recommendations
are useful and how we might extend them.

3.2.2 Exploring Alternatives and History Management Tools. Tools
for investigating alternatives, from interactive systems to program-
ming constructs, support our theme of Local Knowledge of Materials.
This category of research investigates supporting users in managing
and exploring variations through parallel authoring for image ma-
nipulation [85] and interface design [34]. Other approaches to vari-
ation have been explored in programming constructs for multiverse
analysis [49, 72]. These projects do not track versions, but allow
users to explore local variations efectively. In a similar vein, novel
tools allowing users to explore similar examples in web design [68]
led to better design outcomes [46]. These parallel authoring and
example search interfaces strongly resonate with our principle of
local knowledge building through variation and comparison, which
we discuss in Section 2.2.

Tools to support the organization and communication of the
design process have found success through contextual annotation
and fexible arrangement, which support our theme of Annota-
tion for Holistic Interpretation. These projects have explored how
annotations and virtual canvas editors help communicate the de-
sign process [15, 60] and help manage ideas and support refec-
tion [39, 50, 51, 77]. These works ofer support for our principle in
Section 2.3 that knowledge practices center on contextualization
and interpretation of versions. Quickpose builds on this work as
a version control canvas that primarily supports a practitioner in
engaging the material at hand, including the history of versions and
annotations, rather than communicating or refecting afterwards
on a design process.

3.2.3 Creative Programming Environments and Constructs. Inter-
faces for creative coding have prioritized rapid exploration and
iteration, and have focused on connecting many small programs
together to form directed acyclic graphs (DAGs) which lend them-
selves to variation [7, 22, 78, 98]. While these implicitly support
variation of individual parts of the program, they do not version
the program itself. This prevents users from explicitly combining
changes across components and using their program history be-
yond what they manually duplicate. Similarly, p5.fab [84] supports
rapid experimentation by allowing users to directly control ma-
chine execution, but does not help scafold this experimentation
over time. While all of these tools seem to support material inter-
action with programs (and, with p5.fab, manufacturing devices),
they do not manage versions of their programs. In contrast, Quick-
pose replicates the entire program in each version, allowing users
to easily explore and manage entirely diferent programs which
originated from the same starting point. Quickpose is designed to

CHI ’23, April 23–28, 2023, Hamburg, Germany Rawn et al.

Figure 2: The Quickpose interface alongside the Processing IDE and render output. A. Quickpose integrates a version control
history into an interactive canvas, allowing users to fexibly navigate, arrange, and annotate their program versions. Versions
are shown as circular thumbnails of their render output. Users can update the render (B) and program state (C) by clicking on a
thumbnail corresponding to that version. The current version is indicated with a blue border. B. The output window renders
the current Processing program as a still image or animation. C. The Processing IDE is where users edit and execute their
Processing programs, or sketches.

support more involved exploration and discovery in line with our
discussion in Section 2.1.

3.3 Version Control but not Material Interaction
3.3.1 Studying Versioning Strategies for Programmers. Previous
research has investigated how programmers take up code as a ma-
terial, often without the explicit support of their programming tools.
First, they highlight how programmers already explore, experiment,
reason with, and build tacit knowledge about programs and their ex-
ecutions [5, 6]. Second, they emphasize how existing programming
environments poorly support programmers in this process [5, 6, 73].
Yoon et al. [94, 96] study programmers’ backtracking—returning
to an earlier state of the program—behaviors to show how current
version control tools fail to support these behaviors. In this paper
we explore how version control tools can better support program-
mers in material interaction: reasoning and refecting on the entire
process of programming across versions.

3.3.2 Novel Version Control Tools. Besides supporting experimen-
tation, iteration, and history navigation, version control tools have
also focused on annotation of version histories for refection [88],
learning [10, 28, 30], and sharing [52, 62]. These projects highlight
the importance of annotation for bringing context to versions and
aiding interpretation (Section 2.3).

De Rosso et al. [18] discuss their redesign of Git, a widespread
version control system. They were able to address common issues
with the system by identifying conceptual errors from users and
redesigning Git’s abstractions to address those errors. While this
line of research is valuable, our investigation in this paper is not
meant to deliver design guidance for a system like Git. Git is pri-
marily intended for managing changes in the context of software
engineering [18]: communicating and combining changes, tagging
versions for institutional purposes (marking releases of software,
demarcating experimental or abandoned features, etc), and main-
taining a single, common history to restore in case of failure. While

these are important aims of software engineering, this paper ex-
plores how version control can support an entirely diferent set of
priorities, which we discuss in Section 2.

3.4 Version Control and Material Interaction
Previous version control systems have resonated with our focus of
material interaction. Although these works do not discuss material
interaction directly, the success of the tools in supporting engage-
ment with materials provides a strong foundation to propose our
themes in Section 2. Previous work has included design tools for ex-
ploring undo/redo history [59] and managing non-linear histories
for image manipulation [12], vector graphics [45, 83], parametric
design [97], and interface design [33]. Research in version control
tools for programs has explored new ways to use version history,
including interactive timelines of program edits [54, 92, 93, 95],
and working with and retrieving changes of Jupyter notebook
cells [4, 42, 89] or individual lines of code [57].

These projects collectively rely on the principle that exploratory
and iterative uses of version history leads to better design outcomes,
which strongly aligns with our themes in Sections 2.1 and 2.2. While
these works are not presented as such, we would describe them as
supporting material interaction as we have described. Not only do
they support material interaction with the artifact itself (whether
the code, image, or vector graphic), but they also support users in
engaging the version history of that artifact as a material in its own
right: helping users refect on, understand, and manipulate their
practices of programming. In this paper we build on this work to
propose preliminary concepts to explain why these interfaces are
successful, alongside design concepts which propose how we might
measure and recognize material interaction behaviors in the use of
such interfaces.

Understanding Version Control as Material Interaction with Qickpose CHI ’23, April 23–28, 2023, Hamburg, Germany

4 SYSTEM DESCRIPTION
Following our three design principles, Quickpose is a version con-
trol system designed to support programmers in engaging version
control as a material interaction and subsequently measure that
engagement. Built as a companion interface and version control
system for the creative coding platform Processing [65], Quickpose
integrates versioning capabilities for a Processing program into a
direct-manipulation canvas editor, ofering a fexible and convenient
platform for exploration, comparison, and annotation. Processing
was a well-matched IDE within which to build Quickpose, given
its active use among expert creative coders, its extensive libraries
and community support, and its ethos of building an environment
for sketching in code [82]. Processing users often generate visual
images and animations with their code (in Processing, programs
are referred to as sketches), iterating between the IDE and the visual
output (the render) very quickly.

Quickpose scafolds this iteration and exploration as a version
control tool, saving the render outputs and sketches for each it-
eration and allowing users to quickly navigate between them. A
user would begin a Quickpose session by opening a new Processing
Sketch (shown in our system diagram in Fig 2.C) and running Quick-
pose from within the editor’s menus. They would then open their
browser to the given URL, which serves the static front end canvas
in a web browser. Clicking between versions (shown as circles with
images in the center in Fig 2.A) updates both the Processing Code
in the IDE (Fig 2.C) and also the render output, which runs as a
Java Applet as an additional window (Fig 2.B).

Users can create a copy of any version by shift+clicking on that
version (shown in our diagram of features on Fig 3), and the editor
will automatically update to that state. The current version is shown
on the canvas with a blue highlight (as illustrated in Fig 3). Because
Quickpose functions as an interactive canvas, users can fexibly
arrange, draw on, style, or label versions (Fig 4). Additionally, users
can generate an export folder with the selected code and render
outputs from versions depending on the versions’ color styling on
the canvas, as shown in Fig 5.

4.1 Instantiating Design Principles into
Features

In this section we discuss how our three design principles informed
the design of Quickpose, highlighting how each feature supports
each theme.

4.1.1 Direct Manipulation [79], One-Click Navigation and Forking.
Quickpose represents versions as canvas elements with thumbnails
of those versions’ render outputs. Clicking on a version in the
Quickpose interface updates the Processing IDE and output window
to that version, while shift-clicking a version creates a new version
(a fork), and updates the IDE to that version (Fig 3). To ensure no
history is lost, states with child nodes are locked for editing, but
are always able to fork.

• Continual Goal Reformation: As goals develop and change,
users can easily backtrack from any previous iteration to ex-
plore a new path, up to and including the very frst iteration.

• Contextual Exploration: The version history graph embed-
ded directly into the canvas provides efective visualization

Figure 3: Shift+Clicking on a version creates a new copy (a
fork) and updates the program state to edit this new version

and comparison of groups of versions. Because users can
interact with the graph directly, users can navigate and fork
versions just by clicking through the visualization.

• Holistic, Linked Annotation: Seeing the thumbnails of all
states at once allows refection of the entire process. Because
clicking on each version thumbnail in the Quickpose canvas
updates the IDE and render state, the program state and
canvas annotations are directly linked.

Figure 4: Users can annotate specifc versions with text labels
and images, or use labeled shapes or arrows to refer to groups
of versions.

4.1.2 Grouping, Anchoring, Annotating, Arranging. Because the ver-
sion history graph is represented as interactive canvas elements,
versions can be grouped, anchored and parented via arrows, styled,
and scaled just as users interact with any other canvas element. This
also allows versions to be easily integrated into existing patterns of
working with canvas editors to organize versions alongside notes,
images, and other graphics.

• Continual Goal Reformation: Goals, outcomes, or ver-
sions for export and further development can be annotated or
demarcated on the canvas, either describing a single version,
many versions, or the entire process.

• Contextual Exploration: Versions can be spatially arranged
to informally situate versions among others.

CHI ’23, April 23–28, 2023, Hamburg, Germany Rawn et al.

• Holistic, Linked Annotation: Annotations can reference
many versions through positioning, grouping, or parenting
via arrows. Additionally, annotations and versions can be
arranged and styled fexibly and can comprise multiple kinds
of media (text, images, illustrations, etc).

4.1.3 Checkpointing, Autosaving. While forking and navigation
between versions are manual operations, Quickpose also saves
“checkpoints”: edits to a version which are saved internally when a
user executes a save or when they navigate away from a version
having made edits. This ensures that edits are not lost or acciden-
tally overwritten even if a user has not dedicated a new version to
hold those changes yet.

• Continual Goal Reformation: Users can retrieve over-
written checkpoints and create versions from them if their
goals or framing changes and they become newly valuable
or interesting.

• Contextual Exploration: Users can switch between many
versions quickly without fear that changes might be lost or
overwritten accidentally.

4.1.4 Export by Color. Because versions in Quickpose behave like
other canvas elements, style elements like color can be used to not
only informally demarcate certain versions, but can also be used as
a handle for technical features, such as the “export by color” menu
which exports all the thumbnails and code iterations of a single
color into a folder in the user’s local project folder.

• Continual Goal Reformation: Exporting by color allows
users to export multiple versions on the same branch or
across branches as a single outcome.

S51 k

0

Figure 5: Export by Color allows users to export versions by
their canvas color

4.2 Implementation
Quickpose is implemented in two parts: a background daemon in
the Processing IDE environment which listens for changes, stores
local data, and updates the IDE, and a static front-end web interface
which connects to the daemon via a local network connection (Fig
4). The front-end is built onto the Tldraw canvas library [70] to
display live updates of versions alongside canvas annotations. Like
other version control systems, we represent versions as a directed

acyclic graph of nodes and links between nodes, but allow the user
to interact directly with this representation by displaying them as
generated, interactive canvas elements.

Figure 6: Quickpose is implemented as a front-end interface
and a back-end daemon for Processing. These two compo-
nents communicate through our "Core Abstractions", which
defne a basic API for reimplementing the Quickpose front-
end for another domain.

4.2.1 Local Data and Logging. In order to study how practitioners
use Quickpose, regular backups of the canvas are made in addition
to logs of user activity. These logs and archives are stored in the
user’s project folder locally. These logs gave us a detailed picture of
user interaction with the tool, which we analyze in our user study.

4.2.2 Bringing Qickpose to Other Domains. While Processing was
a convenient place to implement Quickpose given its user base of
artists and its focus on programs which generate visual outputs, the
Quickpose interface can be used in other domains. As a front-end
system for managing versions, it could handle versions in a variety
of other places, such as an image editor, programming interface, or
design tool. We describe the API structure (“Core Abstractions” in
Fig 6) below. These are the only abstractions needed to implement
Quickpose for a new programming environment. For example, an
image editor could interface with the core of Quickpose as long as
it was able to change between versions, make copies of versions,
and serve thumbnail images. Due to the small and well-defned
nature of these abstractions, which make few assumptions about
programming environment or language, we argue Quickpose can
be straightforwardly adapted to a variety of contexts.

5 STUDY DESIGN
Our study of how practitioners use Quickpose is designed to under-
stand (1) how users engage in material interaction behaviors if their
tools ofer the functionality for doing so, and (2) whether the mea-
sures suggested by the collected themes present initial promise for
recognizing such practices. We do not focus on evaluating the tool’s
usability, its success on a predefned task, nor trying to validate
the themes presented. Instead, we explore how we can recognize
behavior associated with material interaction. Therefore, we study
how indicators of material interaction appear in participants’ use
of version control when that version control tool (Quickpose) is
designed to permit such behaviors. As a generative [2] exploration
of supporting and measuring material interaction, this study is not
designed to provide predictive power (that is, it could suggest, in
a falsifable way, how certain design changes will infuence user

Understanding Version Control as Material Interaction with Qickpose CHI ’23, April 23–28, 2023, Hamburg, Germany

Actions Parameters
(Inputs)

Server Responses (Outputs)

Select Version ID New Versions fle
Fork Version ID New Versions fle
SaveCanvas Canvas version Nothing
GetCanvas Nothing Canvas File
Image ID of Version Thumbnail Image
Export List of Version Export to Local Files

IDs
Table 1: The Quickpose API was designed to be simple to
implement and not geared specifcally for Processing or Cre-
ative Coding. Any domain which has the basic concepts of
versions, forking, navigating, and exporting could reimple-
ment these abstractions.

behavior), but rather seeks to understand what potential our collec-
tive themes (and subsequent measures and design principles) have
for supporting and recognizing the behaviors they suggest in the
specifc context of Quickpose. We discuss how our fndings might
generalize and support future work in other domains in Section
7.2.2.

Although Quickpose is not frst and foremost a creativity support
tool due to its focus on material interaction instead of creativity, our
study nonetheless follows many of Remy et al.’s recommendations
for CST evaluation: we deployed Quickpose in an in-situ, longitudi-
nal study among four expert users of Processing for 3-5 weeks [66].
Recruited from Processing and Creative arts communities and re-
lated email lists, these expert participants used Quickpose in the
course of their regular Processing usage and were not given specifc
goals or tasks, nor were they asked to use the tool for a certain
number of hours. Participants were screened for their experience
with and planned regular usage of Processing for the duration of
the study. Partway and at the conclusion of the study, researchers
discussed in semi-structured interviews with each participant their
experience of using Quickpose, walking through specifc projects
and refecting on their artistic process. Compensated at $40 per
hour (for interview time, not time spent using the software) in the
form of a gift card, total interview time for each participant ranged
from 2 hours to 4 hours. Participants were also asked to (optionally)
upload project data, including usage logs, Quickpose canvases, and
program versions.

In total, we collected interview recordings, usage logs, canvas
data, and project fles, including code and renderings. To analyze our
data, we conducted provisional coding [71] (done by the frst author)
on interviews and canvas annotations using measures, listed below,
which we created from our themes. Codes were not iteratively
defned during the analysis, although we present an updated set of
measures in Section 7.2.1. We coded canvas data for annotations
which contextualize states, annotations which interpret states, and
indications of “fnal” or “fnished” versions. We also coded our
interviews with participants for the presented themes more broadly.

We use these themes of material interaction to motivate our
study of practitioners’ use of Quickpose and propose practical mea-
sures for studying material interaction in version control systems.
Following our discussion in Section 2, our measures are as follows:

(1) Measuring Continual Goal Reformation: Do practition-
ers signifcantly reframe their goals over the course of a
Quickpose session? Do they make many signifcant back-
tracks to pursue a diferent direction? Do they work on
multiple branches at once? Do they export or mark as fnal
multiple versions, either at the ends of multiple branches or
sequential points along a single branch?

(2) Measuring Contextual Exploration: Do practitioners ex-
hibit both low depth, high degree and high depth, low degree
patterns in the course of their explorations? Do they shift
between them at diferent moments of a session? Do prac-
titioners repeatedly backtrack with low depth on the same
state or nearby states to capture a single variation?

(3) Measuring Holistic, Linked Annotation: Do practition-
ers use annotations in Quickpose (color, text, positions of ver-
sions, images) to contextualize rather than generalize the ver-
sions? Do practitioners use annotative practices which sup-
port interpretation (emotional or metaphorical language)?
Do practitioners use annotation to describe not just individ-
ual states, but groups of states or movements between many
states?

Theme Measures
Continual Number and depth of backtracks
Goal Evidence of simultaneous development on
Reformation multiple branches

Number of versions exported or marked
"Final" or "To export"

Contextual Navigation patterns between versions
Exploration Depth and degree of nodes
Holistic, Annotations which contextualize states
Linked Annotations which support interpretation
Annotation Annotations which describe movements

between states or multiple states
Table 2: Proposed material interaction measures for Quick-
pose. These measures structure our study below, where we
investigate how each measure might reveal or clarify mate-
rial interaction behaviors.

6 MEASURING AND IDENTIFYING MATERIAL
INTERACTION

Three participants submitted ten projects over a study period of fve
weeks. In total, we captured usage data for 192 hours of usage of
Quickpose, 115 versions created, 871 navigations to a diferent ver-
sion, 178 annotations created, and 230 checkpoints saved. Because
many projects were worked on across multiple periods and with
diferent timescales, timeline views below have been normalized
for the time spent with each project running.

CHI ’23, April 23–28, 2023, Hamburg, Germany Rawn et al.

6.1 Measuring Continual Goal Reformation
6.1.1 Number and depth of backtracks. We recorded each instance
of a user forking a version. For each project, we then calculated the
depth (the number of nodes from the new forked node to the root
node of the version tree) and the distance (the number of nodes on
the shortest path from the new forked node to the previous forked
node). We show the results for three projects in Figure 7. In this
plot we see multiple backtracks, represented as sharp slopes up, or
in other words, a decrease in depth from the previous fork. These
jumps indicate users went back signifcantly in their history to start
again in a new direction.

Fork Depth Shows Significant Backtracks

Figure 7: Plotting forks from three projects by normalized
project time (x-axis) against depth (y-axis), which is the dis-
tance from the root node of the version tree. Steep jumps
show signifcant backtracks.

6.1.2 Development on multiple branches in parallel. Simultaneous
development on multiple branches, in contrast to backtracking, is
identifed by a high distance from the previous fork but a small
change in depth from the previous fork. For example, a participant
may have two long branches, b1 and b2, fork from the end of branch
b1, then fork from the end of b2, between these forks is a small
diference in depth (the two forks are similar distances away from
the root node), but a high change in distance(the two forks have a
large traversal distance between them). Figure 8 shows all instances
of forking in our dataset, arranged according to both distance and
change in depth; the area marked “Parallel Development” represents
the high distance, low diference-in-depth area.

6.1.3 Versions marked as “final” or “complete” . From user canvases,
we recorded instances of multiple “fnal” versions, marked either by
a text label indicating fnality, or, as in Figure 9, a flename indicating
an export. In the Figure 9 canvas, the participant was generating
video fles from desired versions and annotating the version with
the flename of the generated video. We therefore interpreted two
kinds of "marking fnal": (1) either referencing an export of the
artifact, like the example above, or (2) indicating that a version
was to be kept for future development. For example, P2 generated
multiple variations of the same sketch but with diferent aesthetic
qualities for diferent situations. P2 described in an interview with
researchers how these versions were intended to form a "palette" for
future development. In the four projects where these annotations
were present, we recorded 53 annotations of this kind, although one

Parallel Development

Graph Distance and Depth between Forks
shows Parallel Development

Figure 8: Plotting forks from all projects by distance from
last fork (x-axis) against the diference in depth from the
last fork (y-axis). High distance and low diference in depth
(indicated in the dotted ellipse) shows a parallel development
between diferent branches, but not a backtrack.

project contained 36 of these. Many of these annotations (all but 9)
were not on leaf nodes and many were on multiple parts of a branch.
Marking many successive iterations or intermediate versions each
as “fnal” or “to export” indicates an evolving goal, where marking
versions across disparate branches as “fnal” indicates bifurcation
of goals. We did not record any instances of participants using the
“Export by Color” feature. We will note, however, that this feature
only exported still images, and all of the participants in our study
worked on video animation projects.

Figure 9: Versions made by P2 show successive versions. Each
version is annotated with the video fle name which was
generated by that version (indicated by dashed circles).

6.2 Measuring Contextual Exploration
6.2.1 Navigation Among Versions. In addition to forking behavior,
we also recorded when participants navigated between versions by
clicking on them on the Quickpose canvas to update the editor and
the render. In Figure 10, we show two Quickpose projects as directed
graphs with both the forks (shown in grey) and navigations (shown
in blue) between nodes (shown in green). These visualizations show
how participants navigated broadly across their version history
even in cases in which their forking history shows a more linear
behavior; at each version, this navigation history shows evidence

Understanding Version Control as Material Interaction with Qickpose CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 10: Two Quickpose version graphs visualized. Grey arrows indicate a fork between versions, and blue lines indicate a
navigation from one version to the other.

of how participants refected on and compared versions across their
history.

6.2.2 Depth and Degree of Nodes. In order to investigate broad (low
depth and high degree) versus deep (high depth and low degree)
exploration, we chart the nodes of four projects by degree (how
many edges a node has) and depth (its distance from the root node)
in Fig 12. We theorized that many high depth, low degree nodes
would indicate deep exploration, while low depth, high degree
nodes would indicate broad exploration. Our results visualized here
show that while participants were able to explore deeply, there were
relatively few nodes that had more than three edges (i.e., forked
more than twice). (See discussion in Section 7, including how future
work may support broad exploration.)

6.3 Measuring Holistic, Linked Annotation

Figure 11: Top: An annotation of "layered" describes a group
of three versions. The canvas element group includes both
the annotation and the versions. Bottom: A participant uses
interpretive language to describe a version rather than sum-
marize it.

6.3.1 Annotations that describe movements between states or multi-
ple states. We saw participants use a single annotation to describe
multiple versions in four of the projects. Participants either refer-
enced multiple versions explicitly, by “grouping” them together in
the Quickpose interface (Fig 11, left), or implicitly, through posi-
tioning an annotation near multiple versions on the canvas and
describing the content of the versions (for example, annotating
“these versions rotate instead of translate”). However, we found that
these annotations that described multiple versions appeared only
once per project. (See discussion in Section 7 for possible reasons
why.)

6.3.2 Annotations that support interpretation. In six of the projects,
participants used interpretive language to annotate a version. This
included comparisons, such as "Reminds me of crops growing" from
P3 as shown in Figure 11, or included emotional descriptors like
"magical" or "interesting." In the data collected, participants used
13 annotations in this way out of a total of 178 canvas annotations.

6.3.3 Annotations that contextualize states. We found 25 contex-
tualizing annotations in eight of the projects. These annotations
added information about the version, why it was created, or why it
was or was not interesting to the participant. For example, partici-
pants contextualized versions with annotations like "Failed rotation
experiment" and "The previous efect but animating forward then
reversing in a loop".

6.4 Qualitative Support for Material Interaction
At the mid-way point and end of the study, participants were inter-
viewed for approximately 60 minutes on their experiences using
Quickpose and their artistic process. Researchers did not explicitly
mention material interaction in these interviews, instead asking
participants to narrate their experience of one of their Quickpose
canvases and highlight improvements and suggestions for the tool.
For example, participants were asked if they learned anything about
their artistic process while using Quickpose, or if they noticed that
Quickpose was changing their artistic process. In this section we
present excerpts from these interviews which relate to our themes

CHI ’23, April 23–28, 2023, Hamburg, Germany Rawn et al.

of material interaction and help contextualize our participants’
experiences using Quickpose.

6.4.1 Evidence for Continual Goal Reformation. All of our partici-
pants mentioned how Quickpose supported exploration of multiple
goals by backtracking in order to explore new possibilities. P3 high-
lighted how Quickpose helped support goal formation through
supporting exploration of many diferent directions: P3: “Quickpose
is really good for when you don’t really know where you’re going.”
P2 discussed how Quickpose supported iteratively backtracking as
their goals refned and changed, allowing them to collect all their
explorations in a single place for refection and re-use: P2: “I would
start a branch and explore it all the way down...you keep some of
your changes and incorporate that into a diferent direction, and other
times you...start fresh and...do something totally diferent...in which
case you go back to the start and branch of.” Our participants all
indicated that saving and storing many versions quickly allowed
them to more easily explore, especially if their goals were not well
defned. P3 highlighted how the low barrier to make a new ver-
sion allowed saving versions which might only become meaningful
later: P3: “If you don’t know where you’re going, then you’ve got to
record everything.” P2 additionally highlighted how quickly saving
many versions enabled a sustained focus on exploration, rather
than thinking about version control as a separate step in the pro-
gramming process: P2: “What’s really great about [Quickpose] is
that it frees you up...I can always go back to the root and go in a
completely diferent direction after working for three hours in one
way and it’s all still contained and you don’t break that fow.”

6.4.2 Evidence for Contextual Exploration. P3 and P2 expressed
that Quickpose supported context building, idea generation, and
comparison. P2 draws attention to how seeing all the versions at a
glace supported more exploration: P2: “There’s more immediate in-
spiration...Having [all the versions] there gives you more ideas...I think
that’s why [the project] branched out so quickly.” All participants
also mentioned that Quickpose lowered the barrier for exploring
variations. P1 described how Quickpose supported them iterating
locally on a single “base fle:” P1: “You can have a base fle from
where you can try diferent things...tweaking it a little or tweaking
it a lot.” P1 and P2 indicated that exploring local variations aided
building local knowledge about programs. P2 highlighted how eas-
ily forking aided their ability to form tacit knowledge about their
code, discussing how seeing local variations together on the Quick-
pose canvas helped them understand the parameter space of their
program: P2:“...just playing with numbers, I wouldn’t even really
understand [the code]—I really do have to save this, because I don’t
really understand what it’s doing.” In all of these excerpts, partici-
pants found that seeing all variations at a glance and creating and
navigating versions quickly helped how they form ideas and reason
about their programs, features which we designed Quickpose to
enable specifcally.

6.4.3 Evidence for Holistic, Linked Annotation. P3 mentioned that
Quickpose supported annotating and organizing in an idiosyncratic
way: P3: “That’s what Quickpose is for, whatever kind of organization
you want.” P2 referred to the Quickpose canvas as a “mindmap,”
allowing them to map out their ideas and explorations through
successive versions. P3 requested that web pages be integrated into

the Quickpose canvas itself to store reference material within the
version history, analogous to “leaving a comment in the source code.”
P3 cited how they would like to embed articles and resources that
were not just about a single version, but were aiding the exploration
more holistically.

6.4.4 How This Evidence Supports Our Themes. Through the inter-
views, participants expressed their perception of their programming
interactions while working with Quickpose. These excerpts present
evidence that participants’ perceptions of their experiences with
Quickpose aligned with our theories of material interaction. While
testimony from participants is not sufcient on its own, it further
supports that our measures of material interaction were in fact
measuring salient aspects of the user experience.

7 DISCUSSION
In this section we frst show how Quickpose scafolds research on
material interaction, using themes from our interviews. We use
this discussion to outline future directions for version control that
support the formation and development of goals. We then review
our measures in light of our study results to recommend refned
measures. Finally, we discuss how the themes we distilled for mate-
rial interaction might help clarify existing conversations in HCI and
how this work could support the development of general theories of
material interaction for interfaces. We also refect on what remains
to (i) produce a predictive theory of material interaction, (ii) test
(and attempt to falsify) that theory, and (iii) design with a theory
of material interaction in mind.

7.1 Giving Structure to Process
From our study and analysis, we see that Quickpose served as
a platform for studying material interaction because it allowed
practitioners to express how they were working and reasoning
with materials in a format which researchers could analyze and
track. From a user perspective, Quickpose served as a language
for expressing process because it was the environment in which
practitioners actively reasoned about their artifacts (in this case,
programs and renders) in tandem with goals. For example, P2 and
P3 said that Quickpose helped them think and explore in a more
“structured” way. We interpret “structured” here as meaning that
Quickpose gave them a way to instantiate and represent in a com-
putational tool how they were working through their process. P2
drew explicit attention to Quickpose as a platform for externalizing
and recording their cognition [36], describing it as a “mindmap.”
Likewise, we recall P3’s earlier comment on how the fexibility of
the annotations supported externalizing an idiosyncratic workfow
for “whatever kind of organization you want.” Therefore, we argue
that Quickpose succeeded as a tool for studying material interaction
because it was also a language for practitioners to articulate their
process. This framing of tools—as simultaneously a platform for
research and a language for practitioners—helps us not only study
material interaction, but also evaluate the success of tools that aim
to facilitate it.

7.1.1 Feedback : Feedforward :: Backtracking : Forwardtracking. In
Section 6, we discussed how practitioners reason about their work

Understanding Version Control as Material Interaction with Qickpose CHI ’23, April 23–28, 2023, Hamburg, Germany

High Depth, Low Degree Nodes Show Iterative Development
High Depth, Low Degree Nodes = Low Depth, High Degree Nodes =

Figure 12: The nodes from four projects graphed by depth and degree (a node’s number of edges). High depth, low degree nodes
indicate deep exploration (indicated with the dashed box on the top left of each plot), while low depth, high degree nodes
indicate broad exploration(indicated with dashed box on the bottom right of each plot).

with Quickpose, which includes not only understanding and refect-
ing on past versions, but also future directions, intentions, and goals.
We found evidence that once version control (Quickpose) became
the platform for reasoning about the materials at hand (and taken
up as a material itself), participants also indicated future directions,
latent possibilities, and unarticulated goals. For example, P1 anno-
tated versions with what possibilities or variations had yet to be
explored. Analogous to feedback (understanding what a computer
has just done) and feedforward (understanding what a computer
is about to do), we propose a similar counterpart to backtracking
(navigating to an earlier version of the code) as forwardtracking:
outlining future directions, intentions, and unexplored space in a
user’s “mindmap.” Our discussion of continuous goal reformation
highlighted how working with materials is a continuous process
of refecting on prior versions, engaging actively with the mate-
rial at hand, and using both to project into the future. With our
distilled themes of material interaction in hand, we argue that ver-
sion control should then support "forwardtracking" as a practice of
setting and refning goals, which includes outlining unexplored or
latent possibilities in materials, as an important part of supporting
material interaction.

7.2 Towards Practical Concepts for Material
Interaction in Interfaces

Beyond
a theory of material interaction for interfaces which would propose
(1) how to support material interaction through tool design, (2) how
to recognize and measure material interaction when it occurs, and
(3) how to explain and reason about material interaction behaviors
in computer interfaces. While this work does not propose such a
theory, it uses existing literature on material interaction to propose
initial themes and preliminary measures which could scafold fu-
ture theoretical work and system building. As Beaudouin-Lafon
et al suggest [2], generative construction of theories in HCI most
productively happens in domain-specifc, well-bounded contexts –

the considerations for Quickpose specifcally, we envision

in-tandem with iterative implementation and testing. With this in
mind, a general theory of material interaction for interfaces might
only emerge from a mosaic of many explorations, systems, and
applied concepts – what Höök and Löwgren call vertical ground-
ing [37].

This study was not designed to ofer predictive power – the
results could not be used to predict how future users would change
their behavior in response to specifc design interventions. However,
the value of a predictive theory of material interaction for interfaces
is still an open question. While a predictive theory may be helpful
to the requirements we have outlined above, it also does not seem
required to generate useful design principles and outcomes. Höök
and Löwgren [37] emphasize "strong concepts" in HCI which ofer
a design idiom or language to interface designers. These can be
fexibly applied to new domains, require skill to fruitfully employ,
and do not require predictive power for their ability to generate
new designs, ideas, and conceptual lenses. Future development of
a predictive theory of material interaction will need to articulate
why it needs such predictive power, and for what ends. While much
work remains to build theories of material interaction for interface
design, we argue that the themes we have drawn together from
existing literature already present explanatory power to clarify
existing recommendations and fndings about material interaction–
presenting a meaningful place to start on such work. We show
this below in a case study. Additionally, we present our refned,
post-study measures to aid further development and exploration of
material interaction in interfaces.

7.2.1 Measures for Material Interaction. Using the results of our
study, we present an updated set of measures for material interac-
tion for future research (Table 3).

Measuring continual goal reformation. We found that signif-
icant backtracks could be characterized by a sharp decrease in depth
from a previous fork, simultaneous development could be indicated
by forks with a small change in depth but a high distance between
them, and that versions marked as exports or to be used later were

CHI ’23, April 23–28, 2023, Hamburg, Germany Rawn et al.

valuable ways to capture how goals were iteratively refned. While
we did not record any instances of our “Export by Color” feature,
we saw through canvas annotations, later supported by interviews,
that participants had exported animations as videos, which our tool
didn’t support. We also observed that participants left “fnal” ver-
sions within Quickpose canvases to draw on within future projects.
Therefore, instead of looking for “exported” versions, we instead
propose measuring versions which are either linked to fles out-
side of the Quickpose project, versions marked for future use, or
versions which have been drawn into other projects.

Measuring contextual exploration. We found frequent nav-
igation between disparate parts of the version history indicative
that participants were refecting on and comparing across the ver-
sion history. Additionally, we saw that high depth and low degree
nodes could indicate deep exploration while low depth, high degree
nodes could indicate broad exploration. Although we did not mea-
sure many low depth, high degree nodes, we argue that this is not
because the measure is faulty, but because Quickpose did not ade-
quately support that interaction. All of our participants requested
greater support for procedurally making versions by varying one
or a few variables—such as Quickpose generating a design gallery
across the variables—indicating they felt unsupported in broad
variation.

Measuring holistic, linked annotation. While contextualiz-
ing versions were our most common category of annotations, they
were also the most vague categorization, and frequently overlapped
with interpretive annotations. We therefore refned our measures
for contextualizing and interpretive annotations, combining them
to annotations which support interpretation and understanding of
why a version is meaningful.

These measures were developed within the context of Quick-
pose (and version control systems more broadly), and therefore we
cannot predict how they will generalize to other tools and domains.
However, the diverse felds, methods, and practices from which we
drew our discussion of material interaction might indicate that they
have the potential to be helpful elsewhere. As we discuss below,
this can only be answered by putting our themes, principles, and
measures into practice in other domains.

7.2.2 Material Interaction in HCI. While this paper does not pro-
pose a comprehensive theory of material interaction, in this section
we outline how our themes might already be helpful for making
sense of previous recommendations for design tools in HCI and
help reconcile them with new fndings. For example, in his seminal
creativity support tools paper [80], Shneiderman recommends keep-
ing a detailed history to record which actions or alternatives have
already been tried by the user. This record is intended to support
iteration and exploration of the material at hand. However, this
recommendation also raises questions: Why is keeping a record
of previous actions benefcial? How should interactions with this
history be measured? Sterman et al. fnd evidence of practitioners
preferring a less detailed, lower fdelity history in some cases [81]—
how can this evidence be reconciled with Shneiderman’s design
recommendation? In this example, we see our themes and design
principles of material interaction working to bolster the original
recommendation, ofering meaningful dimensions to study, and also
ofering an explanation of Sterman et al.’s fnding. First, our themes

can help explain why keeping records might be benefcial. For ex-
ample, record-keeping aids in building local knowledge through
enabling users to refect on how their changes have impacted their
artifact, or it helps users backtrack if their goals change in response
to the material and they need to pursue another direction. Second,
our measures suggest that we could study history-keeping by track-
ing both how users backtrack to earlier versions but also how they
use earlier versions to inform current work by navigating across
the version history. Finally, these themes of material interaction
ofer an explanation of why some practitioners prefer lower-fdelity
versioning methods [81]. For example, the authors cite a performer
who prefers keeping only the audio to their performances so that
they can have a record of previous work but also feel able to gradu-
ally modify or spontaneously develop the performance. With the
themes of material interaction in hand, one reason for this practice
could be that versions which do not contain enough information to
fully recreate the artifact require exploration and variation on every
backtrack. Thus, low-fdelity capture is a process constraint that
forces a practitioner to reengage with their material at every step.
Where before this practice might have seemed counter-intuitive
in light of Shneiderman’s recommendation, when viewed with a
lens of material interaction, the goal of maintaining a low-fdelity
capture to spurn exploration is aligned with Shneiderman’s call of
engendering innovation through history keeping.

Additionally, our themes of material interaction generate new
research directions beyond the scope of Quickpose. For example, it
suggests exploring a more expansive defnition of version control
systems, which go beyond tools for backing up, collaborating, and
managing code to also include tools for supporting refection, com-
parison, and goal formation. While we propose material interaction
as a lens through which to study and design version control systems,
material interaction within other areas of HCI research remain to be
explored. We hope these themes, design principles, and measures
will scafold generative work with material interaction in other
domains, which might require them to be reworked and appended.

8 LIMITATIONS AND FUTURE WORK
Scale was the major limitation of our study. While we were able to
uncover rich insights by closely investigating three practitioners
and their processes across 3-5 weeks, our small number of partic-
ipants limited the extensibility of our study results. With this in
mind, we look forward to the open-source release of Quickpose,
where a larger usage study of the tool would become possible. Fu-
ture methodological work might require more robust validations of
measures than presented here–testing the inter-rater reliability of
qualitative codes in addition to building codes which can apply to
multiple systems. Both of these will be required for authoritative
comparative studies of material interaction across interfaces.

To better support practitioners in broad explorations in Quick-
pose, we draw inspiration from prior work in parametric design
galleries [97] as a starting point.

There are many opportunities to extend Quickpose to ask fur-
ther questions about material interaction: How might Quickpose
enable greater opportunities for sharing and collaboration? How
does sharing this kind of history afect how people collaborate on

Understanding Version Control as Material Interaction with Qickpose CHI ’23, April 23–28, 2023, Hamburg, Germany

Theme Initially Proposed Measures Refned Measures
Continual
Goal
Reformation

Contextual
Exploration

Holistic,
Linked
Annotation

Number and depth of backtracks
Evidence of simultaneous development on
multiple branches
Number of versions exported or marked "Final"
or "To export"
Navigation patterns between versions
Depth and degree of nodes

Annotations which contextualize states
Annotations which support interpretation
Annotations which describe movements
between states or multiple states

Sharp decreases in depth from previous forks
Forks with small changes in depth but high distance between
Versions linked to fle exports
Versions marked for future use or used by other projects

Frequent navigations between disparate branches
High depth, low degree nodes indicate deep exploration
Low depth, high degree nodes indicate broad exploration
Explicit groups of annotations with multiple versions
Annotations implicitly referencing, by content or position,
many versions
Annotations supporting interpretation of why a version is
meaningful

Table 3: Initial and updated material interaction measures.

Processing projects? How might Quickpose be used in an educa-
tional environment to support learning outcomes and refection,
as research has already shown version histories are promising in
this domain [29]? We are also interested in investigating the ideas
behind Quickpose in non-visual, creative domains in addition to
domains not seen as "creative": for instance, how might we sup-
port and measure material interaction in more traditional software
engineering environments?

Additionally, previous work in exploratory version control sys-
tems have engaged scale (the navigation and retrieval of many
diferent versions) as a major challenge in the domain. Kery [41]
discusses the difculty of the Verdant-1 system in scaling beyond a
few versions, which were surfaced as inline alternatives to Jupyter
notebook cells. In later work, they emphasize the importance of
visual search and diverse ways of retrieving information, which
appear, from our initial study, to be strengths of Quickpose. Quick-
pose’s design principles may suggest further work in this area:
having a version control system serve as a "mindmap" seemed to al-
low participants to organize and navigate between tens of versions
at once, which we discuss in Section 6.2. Future work could test to
what extent Quickpose’s fexible visual layout and open-ended an-
notation aids search and retrieval of versions, in conversation with
theories of information foraging [63] and context reinstatement [8].
At the same time, future research systems for notebook versioning
like Verdant could explore the continuous annotation and curation
which allowed Quickpose to feel more like a "mindmap" than a list
of commit messages, integrating design features of Quickpose into
versioning systems for data science and computational notebooks.

The themes of material interaction are far from complete as dis-
cussed here. For example, timescale is a major unexplored part of
how practitioners work with materials, but a major contributor to
a practitioner’s development of knowledge, tools, and experimenta-
tion practices. All of our participants mentioned that the 3-5 week
study period was too short for them to utilize many of the projects
they worked on, with P1 saying that it is not uncommon for them
to visit a project more than a year later. Additionally, P2 and P3
mentioned how they have built up, over the course of their entire
time working in Processing, personal libraries of code snippets

for use in future work. We argue that material practice is a life-
long engagement, one in which practitioners build environments,
tools, and knowledge over months and years of work. Studying a
long-term material practice echoes similar recommendations for
longitudinal studies of creativity support tools [58, 81] and building
community support for research tools [48].

9 CONCLUSION
We presented three themes of material interaction, which distilled
an existing, high-level discussion of how practitioners engage their
materials into actionable claims and measures for interfaces. We
used these claims to generate design principles which informed
Quickpose, a version control tool for creative coding. Quickpose
provided a platform to measure behaviors associated with material
interaction and better understand them by giving users a language
to express their process. To investigate the initial promise of our
proposed measures, we conducted an in-situ, longitudinal study
with expert creative coding practitioners. We found some of our
proposed measures revealed evidence of behaviors associated with
material interaction and contextualized these fndings through inter-
views with participants. We argue that operationalizing an existing
discussion of material interaction gave insight into practitioners’
processes, clarifes existing recommendations, and suggests future
directions for research. In doing so, we hope to scafold future gen-
erative exploration of material interaction through the design and
study of new systems.

ACKNOWLEDGMENTS
We would like to thank the many colleagues who gave suggestions
and critique throughout the project, especially Sarah Sterman, J.D.
Zamfrescu-Pereira, Jennifer Jacobs, and Camille Utterback. We
also thank our study participants for their time and thoughtful
refections. This work is supported in part by NSF grant CA-HDR
2033558. Sarah E. Chasins is a Chan Zuckerberg Biohub Investigator.

REFERENCES
[1] Eli Alshanetsky. 2019. Articulating a Thought. Oxford University Press.

CHI ’23, April 23–28, 2023, Hamburg, Germany Rawn et al.

[2] Michel Beaudouin-Lafon, Susanne Bødker, and Wendy E. Mackay. 2021. Genera-
tive Theories of Interaction. ACM Transactions on Computer-Human Interaction
28, 6 (Dec. 2021), 1–54. https://doi.org/10.1145/3468505

[3] Jane Bennett. 2010. Vibrant Matter: A Political Ecology of Things. Duke University
Press. https://doi.org/10.2307/j.ctv111jh6w.

[4] Mary Beth Kery. 2017. Tools to support exploratory programming with data.
In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, Raleigh, NC, USA, 321–322. https://doi.org/10.1109/vlhcc.2017.
8103490

[5] Mary Beth Kery and Brad A. Myers. 2017. Exploring exploratory programming.
In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, Raleigh, NC, 25–29. https://doi.org/10.1109/vlhcc.2017.8103446

[6] J. Brandt, P.J. Guo, J. Lewenstein, S.R. Klemmer, and M. Dontcheva. 2009. Writing
Code to Prototype, Ideate, and Discover. IEEE Software 26, 5 (Sept. 2009), 18–24.
https://doi.org/10.1109/ms.2009.147

[7] Cameron Burgess, Dan Lockton, Maayan Albert, and Daniel Cardoso Llach.
2020. Stamper: An Artboard-Oriented Creative Coding Environment. In Extended
Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems.
ACM, Honolulu HI USA, 1–9. https://doi.org/10.1145/3334480.3382994

[8] Gaston R. Cangiano. 2011. Studying episodic access to personal digital activity :
activity trails prototype. Ph. D. Dissertation. UC San Diego. https://escholarship.
org/uc/item/7jc2n9zh

[9] J. M. Carroll and W. A. Kellogg. 1989. Artifact as theory-nexus: hermeneutics
meets theory-based design. ACM SIGCHI Bulletin 20, SI (March 1989), 7–14.
https://doi.org/10.1145/67450.67452

[10] Caitlin Cassidy, Max Goldman, and Robert C. Miller. 2018. Glanceable code
history: visualizing student code for better instructor feedback. In Proceedings
of the Fifth Annual ACM Conference on Learning at Scale (L@S ’18). Association
for Computing Machinery, New York, NY, USA, 1–4. https://doi.org/10.1145/
3231644.3231680

[11] Joel Chan and Christian D. Schunn. 2015. The importance of iteration in creative
conceptual combination. Cognition 145 (Dec. 2015), 104–115. https://doi.org/10.
1016/j.cognition.2015.08.008 QID: Q50565694.

[12] Hsiang-Ting Chen, Li-Yi Wei, and Chun-Fa Chang. 2011. Nonlinear revision
control for images. In ACM SIGGRAPH 2011 papers on - SIGGRAPH ’11. ACM Press,
Vancouver, British Columbia, Canada, 1. https://doi.org/10.1145/1964921.1965000

[13] Ricky Chen, Mychajlo Demko, Daragh Byrne, and Marti Louw. 2021. Probing
Documentation Practices: Refecting on Students’ Conceptions, Values, and Ex-
periences with Documentation in Creative Inquiry. In Creativity and Cognition.
ACM, Virtual Event Italy, 1–1. https://doi.org/10.1145/3450741.3465391

[14] Andy Clark and David Chalmers. 1998. The Extended Mind. Analysis 58, 1 (1998),
7–19. https://doi.org/10.1093/analys/58.1.7 Publisher: [Analysis Committee,
Oxford University Press].

[15] Verina Cristie and Sam C. Joyce. 2017. Capturing And Visualising Parametric
Design Flow Through Interactive Web Versioning Snapshots. In Proceedings of
IASS Annual Symposia, Vol. 2017. International Association for Shell and Spatial
Structures (IASS), 1–8. Issue: 5.

[16] Nigel Cross. 1982. Designerly ways of knowing. DESIGN STUDIES 3, 4 (1982), 7.
[17] Peter Dalsgaard. 2017. Understanding the Nature and Role of Tools in Design.

International Journal of Design 11, 1 (2017), 13.
[18] Santiago Perez De Rosso and Daniel Jackson. 2016. Purposes, concepts, misfts,

and a redesign of git. In Proceedings of the 2016 ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications. ACM,
Amsterdam Netherlands, 292–310. https://doi.org/10.1145/2983990.2984018

[19] Kristin N. Dew and Daniela K. Rosner. 2018. Lessons from the Woodshop: Culti-
vating Design with Living Materials. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. ACM, Montreal QC Canada, 1–12.
https://doi.org/10.1145/3173574.3174159

[20] Alan Dix and Layda Gongora. 2011. Externalisation and design. In Procedings
of the Second Conference on Creativity and Innovation in Design (DESIRE ’11).
Association for Computing Machinery, New York, NY, USA, 31–42. https://doi.
org/10.1145/2079216.2079220

[21] Steven Dow, Julie Fortuna, Dan Schwartz, Beth Altringer, Daniel Schwartz, and
Scott Klemmer. 2011. Prototyping Dynamics: Sharing Multiple Designs Improves
Exploration, Group Rapport, and Results. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’11). Association for Computing
Machinery, New York, NY, USA, 2807–2816. https://doi.org/10.1145/1978942.
1979359 event-place: Vancouver, BC, Canada.

[22] Marc Downie. 2008. Field—a new environment for making digital art. Computers
in Entertainment 6, 4 (Dec. 2008), 1–34. https://doi.org/10.1145/1461999.1462006

[23] James Elkins. 1999. What painting is: how to think about oil painting, using the
language of alchemy. Routledge, New York.

[24] Es Devlin. 2020. Es Devlin Culture in Quarantine Masterclass. https://www.
youtube.com/watch?v=58UroGqQ1ls

[25] Raune Frankjær and Peter Dalsgaard. 2018. Understanding Craft-Based Inquiry
in HCI. In Proceedings of the 2018 Designing Interactive Systems Conference. ACM,
Hong Kong China, 473–484. https://doi.org/10.1145/3196709.3196750

[26] Jonas Frich, Michael Mose Biskjaer, Lindsay MacDonald Vermeulen, Christian
Remy, and Peter Dalsgaard. 2019. Strategies in Creative Professionals’ Use
of Digital Tools Across Domains. In Proceedings of the 2019 on Creativity and
Cognition. ACM, San Diego CA USA, 210–221. https://doi.org/10.1145/3325480.
3325494

[27] Henrik Gedenryd. 1998. How designers work - making sense of authentic cognitive
activities. Doctoral Thesis (monograph). Cognitive Science. ISBN: 9789162832100.

[28] Shiry Ginosar, Luis Fernando De Pombo, Maneesh Agrawala, and Bjorn Hart-
mann. 2013. Authoring multi-stage code examples with editable code histo-
ries. In Proceedings of the 26th annual ACM symposium on User interface soft-
ware and technology. ACM, St. Andrews Scotland, United Kingdom, 485–494.
https://doi.org/10.1145/2501988.2502053

[29] Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and Robert C. Miller.
2015. OverCode: Visualizing Variation in Student Solutions to Programming
Problems at Scale. ACM Transactions on Computer-Human Interaction 22, 2 (April
2015), 1–35. https://doi.org/10.1145/2699751

[30] Tovi Grossman, Justin Matejka, and George Fitzmaurice. 2010. Chronicle: capture,
exploration, and playback of document workfow histories. In Proceedings of the
23nd annual ACM symposium on User interface software and technology (UIST
’10). Association for Computing Machinery, New York, NY, USA, 143–152. https:
//doi.org/10.1145/1866029.1866054

[31] Kai Hakkarainen. 2009. A knowledge-practice perspective on technology-
mediated learning. International Journal of Computer-Supported Collaborative
Learning 4, 2 (June 2009), 213–231. https://doi.org/10.1007/s11412-009-9064-x

[32] Donna Haraway. 1988. Situated Knowledges: The Science Question in Feminism
and the Privilege of Partial Perspective. Feminist Studies 14, 3 (1988), 575–599.
https://doi.org/10.2307/3178066 Publisher: Feminist Studies, Inc..

[33] Björn Hartmann, Sean Follmer, Antonio Ricciardi, Timothy Cardenas, and Scott R.
Klemmer. 2010. d.note: revising user interfaces through change tracking, anno-
tations, and alternatives. In Proceedings of the 28th international conference on
Human factors in computing systems - CHI ’10. ACM Press, Atlanta, Georgia, USA,
493. https://doi.org/10.1145/1753326.1753400

[34] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R. Klemmer.
2008. Design as exploration: creating interface alternatives through parallel
authoring and runtime tuning. In Proceedings of the 21st annual ACM symposium
on User interface software and technology - UIST ’08. ACM Press, Monterey, CA,
USA, 91. https://doi.org/10.1145/1449715.1449732

[35] James Hollan, Edwin Hutchins, and David Kirsh. 2000. Distributed cognition:
toward a new foundation for human-computer interaction research. ACM
Transactions on Computer-Human Interaction 7, 2 (June 2000), 174–196. https:
//doi.org/10.1145/353485.353487

[36] Edwin Hutchins. 2006. Cognition in the wild (8. pr ed.). MIT Press, Cambridge,
Mass.

[37] Kristina Höök and Jonas Löwgren. 2012. Strong concepts: Intermediate-level
knowledge in interaction design research. ACM Transactions on Computer-Human
Interaction 19, 3 (Oct. 2012), 1–18. https://doi.org/10.1145/2362364.2362371

[38] Tim Ingold. 2013. Making: anthropology, archaeology, art and architecture. Rout-
ledge, London ; New York.

[39] Nanna Inie, Jonas Frich, and Peter Dalsgaard. 2022. How Researchers Manage
Ideas. In Creativity and Cognition. ACM, Venice Italy, 83–96. https://doi.org/10.
1145/3527927.3532813

[40] Heekyoung Jung and Erik Stolterman. 2012. Digital form and materiality:
propositions for a new approach to interaction design research. In Proceed-
ings of the 7th Nordic Conference on Human-Computer Interaction Making Sense
Through Design - NordiCHI ’12. ACM Press, Copenhagen, Denmark, 645. https:
//doi.org/10.1145/2399016.2399115

[41] Mary Beth Kery. 2021. Designing Efective History Support for Exploratory Pro-
gramming Data Work. Ph. D. Dissertation. Carnegie Mellon University, Pittsburgh,
Pennsylvania, United States.

[42] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. ACM, Denver Colorado USA,
1265–1276. https://doi.org/10.1145/3025453.3025626

[43] David Kirsh. 2013. Embodied cognition and the magical future of interaction
design. ACM Transactions on Computer-Human Interaction 20, 1 (March 2013),
1–30. https://doi.org/10.1145/2442106.2442109

[44] Scott R. Klemmer, Björn Hartmann, and Leila Takayama. 2006. How bodies matter:
fve themes for interaction design. In Proceedings of the 6th ACM conference on
Designing Interactive systems - DIS ’06. ACM Press, University Park, PA, USA, 140.
https://doi.org/10.1145/1142405.1142429

[45] Siniša Kolarić, Robert Woodbury, and Halil Erhan. 2014. CAMBRIA: a tool for
managing multiple design alternatives. In Proceedings of the 2014 companion
publication on Designing interactive systems - DIS Companion ’14. ACM Press,
Vancouver, BC, Canada, 81–84. https://doi.org/10.1145/2598784.2602788

[46] Brian Lee, Savil Srivastava, Ranjitha Kumar, Ronen Brafman, and Scott R. Klem-
mer. 2010. Designing with interactive example galleries. In Proceedings of the 28th
international conference on Human factors in computing systems - CHI ’10. ACM
Press, Atlanta, Georgia, USA, 2257. https://doi.org/10.1145/1753326.1753667

https://doi.org/10.1145/3468505
https://doi.org/10.2307/j.ctv111jh6w.
https://doi.org/10.1109/vlhcc.2017.8103490
https://doi.org/10.1109/vlhcc.2017.8103490
https://doi.org/10.1109/vlhcc.2017.8103446
https://doi.org/10.1109/ms.2009.147
https://doi.org/10.1145/3334480.3382994
https://escholarship.org/uc/item/7jc2n9zh
https://escholarship.org/uc/item/7jc2n9zh
https://doi.org/10.1145/67450.67452
https://doi.org/10.1145/3231644.3231680
https://doi.org/10.1145/3231644.3231680
https://doi.org/10.1016/j.cognition.2015.08.008
https://doi.org/10.1016/j.cognition.2015.08.008
https://doi.org/10.1145/1964921.1965000
https://doi.org/10.1145/3450741.3465391
https://doi.org/10.1093/analys/58.1.7
https://doi.org/10.1145/2983990.2984018
https://doi.org/10.1145/3173574.3174159
https://doi.org/10.1145/2079216.2079220
https://doi.org/10.1145/2079216.2079220
https://doi.org/10.1145/1978942.1979359
https://doi.org/10.1145/1978942.1979359
https://doi.org/10.1145/1461999.1462006
https://www.youtube.com/watch?v=58UroGqQ1ls
https://www.youtube.com/watch?v=58UroGqQ1ls
https://doi.org/10.1145/3196709.3196750
https://doi.org/10.1145/3325480.3325494
https://doi.org/10.1145/3325480.3325494
https://doi.org/10.1145/2501988.2502053
https://doi.org/10.1145/2699751
https://doi.org/10.1145/1866029.1866054
https://doi.org/10.1145/1866029.1866054
https://doi.org/10.1007/s11412-009-9064-x
https://doi.org/10.2307/3178066
https://doi.org/10.1145/1753326.1753400
https://doi.org/10.1145/1449715.1449732
https://doi.org/10.1145/353485.353487
https://doi.org/10.1145/353485.353487
https://doi.org/10.1145/2362364.2362371
https://doi.org/10.1145/3527927.3532813
https://doi.org/10.1145/3527927.3532813
https://doi.org/10.1145/2399016.2399115
https://doi.org/10.1145/2399016.2399115
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1145/2442106.2442109
https://doi.org/10.1145/1142405.1142429
https://doi.org/10.1145/2598784.2602788
https://doi.org/10.1145/1753326.1753667

Understanding Version Control as Material Interaction with Qickpose CHI ’23, April 23–28, 2023, Hamburg, Germany

[47] Jingyi Li, Joel Brandt, Radomír Mech, Maneesh Agrawala, and Jennifer Jacobs.
2020. Supporting Visual Artists in Programming through Direct Inspection and
Control of Program Execution. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. ACM, Honolulu HI USA, 1–12. https:
//doi.org/10.1145/3313831.3376765

[48] Jingyi Li, Sonia Hashim, and Jennifer Jacobs. 2021. What We Can Learn From
Visual Artists About Software Development. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems (CHI ’21). Association for
Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/
3411764.3445682

[49] Yang Liu, Alex Kale, Tim Althof, and Jefrey Heer. 2021. Boba: Authoring and
Visualizing Multiverse Analyses. IEEE Transactions on Visualization and Computer
Graphics 27, 2 (Feb. 2021), 1753–1763. https://doi.org/10.1109/tvcg.2020.3028985
Conference Name: IEEE Transactions on Visualization and Computer Graphics
QID: Q100482061.

[50] Andrés Lucero. 2012. Framing, aligning, paradoxing, abstracting, and directing:
how design mood boards work. In Proceedings of the Designing Interactive Systems
Conference (DIS ’12). Association for Computing Machinery, New York, NY, USA,
438–447. https://doi.org/10.1145/2317956.2318021

[51] Nic Lupfer, Andruid Kerne, Rhema Linder, Hannah Fowler, Vijay Rajanna,
Matthew Carrasco, and Alyssa Valdez. 2019. Multiscale Design Curation: Sup-
porting Computer Science Students’ Iterative and Refective Creative Processes.
In Proceedings of the 2019 on Creativity and Cognition. ACM, San Diego CA USA,
233–245. https://doi.org/10.1145/3325480.3325483

[52] Mark Mahoney. 2018. Storyteller: a tool for creating worked examples. Journal
of Computing Sciences in Colleges 34, 1 (Oct. 2018), 137–144.

[53] Lambros Malafouris. 2013. How Things Shape the Mind: A Theory of Material
Engagement. https://doi.org/10.7551/mitpress/9476.001.0001

[54] Katsuhisa Maruyama, Takayuki Omori, and Shinpei Hayashi. 2016. Slicing Fine-
Grained Code Change History. IEICE Transactions on Information and Systems
E99.D, 3 (2016), 671–687. https://doi.org/10.1587/transinf.2015edp7282

[55] Malcolm McCullough. 1996. Abstracting Craft: The Practiced Digital Hand. MIT
Press, Cambridge, MA, USA.

[56] David A. Mellis, Sam Jacoby, Leah Buechley, Hannah Perner-Wilson, and Jie Qi.
2013. Microcontrollers as material: crafting circuits with paper, conductive ink,
electronic components, and an "untoolkit". In Proceedings of the 7th International
Conference on Tangible, Embedded and Embodied Interaction (TEI ’13). Association
for Computing Machinery, New York, NY, USA, 83–90. https://doi.org/10.1145/
2460625.2460638

[57] Hiroaki Mikami, Daisuke Sakamoto, and Takeo Igarashi. 2017. Micro-Versioning
Tool to Support Experimentation in Exploratory Programming. In Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems. ACM, Denver
Colorado USA, 6208–6219. https://doi.org/10.1145/3025453.3025597

[58] Hedieh Moradi, Long N Nguyen, Quyen-Anh Valentina Nguyen, and Cesar Tor-
res. 2022. Glaze Epochs: Understanding Lifelong Material Relationships within
Ceramics Studios. In Sixteenth International Conference on Tangible, Embedded,
and Embodied Interaction (TEI ’22). Association for Computing Machinery, New
York, NY, USA, 1–13. https://doi.org/10.1145/3490149.3501310

[59] Brad A. Myers, Ashley Lai, Tam Minh Le, YoungSeok Yoon, Andrew Faulring,
and Joel Brandt. 2015. Selective Undo Support for Painting Applications. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems. ACM, Seoul Republic of Korea, 4227–4236. https://doi.org/10.1145/
2702123.2702543

[60] Jasper O’Leary, Holger Winnemöller, Wilmot Li, Mira Dontcheva, and Morgan
Dixon. 2018. Charrette: Supporting In-Person Discussions around Iterations
in User Interface Design. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. ACM, Montreal QC Canada, 1–11. https://doi.
org/10.1145/3173574.3174109

[61] Seymour Papert. 1980. Mindstorms: children, computers, and powerful ideas. Basic
Books, New York.

[62] Soya Park, Amy X. Zhang, and David R. Karger. 2018. Post-literate Programming:
Linking Discussion and Code in Software Development Teams. In The 31st Annual
ACM Symposium on User Interface Software and Technology Adjunct Proceedings
(UIST ’18 Adjunct). Association for Computing Machinery, New York, NY, USA,
51–53. https://doi.org/10.1145/3266037.3266098

[63] Peter Pirolli. 2007. Information foraging theory: adaptive interaction with infor-
mation. Oxford University Press, Oxford ; New York. OCLC: ocm70334982.

[64] Michael Polanyi. 2009. The Tacit Dimension. University of Chicago Press, Chicago,
IL. https://press.uchicago.edu/ucp/books/book/chicago/T/bo6035368.html

[65] Casey Reas and Ben Fry. 2007. Processing: a programming handbook for visual
designers and artists. MIT Press, Cambridge, Mass. OCLC: ocm73993935.

[66] Christian Remy, Oliver Bates, Jennifer Mankof, and Adrian Friday. 2018. Eval-
uating HCI Research beyond Usability. In Extended Abstracts of the 2018 CHI
Conference on Human Factors in Computing Systems. ACM, Montreal QC Canada,
1–4. https://doi.org/10.1145/3170427.3185371

[67] Mitchel Resnick, Brad Myers, Kumiyo Nakakoji, Ben Shneiderman, Randy Pausch,
Ted Selker, and Mike Eisenberg. 2005. Design Principles for Tools to Support

Creative Thinking. (Jan. 2005). https://doi.org/10.1184/R1/6621917.v1 Publisher:
Carnegie Mellon University.

[68] Daniel Ritchie, Ankita Arvind Kejriwal, and Scott R. Klemmer. 2011. d.tour: style-
based exploration of design example galleries. In Proceedings of the 24th annual
ACM symposium on User interface software and technology - UIST ’11. ACM Press,
Santa Barbara, California, USA, 165. https://doi.org/10.1145/2047196.2047216

[69] Daniela K. Rosner, Miwa Ikemiya, and Tim Regan. 2015. Resisting Alignment:
Code and Clay. In Proceedings of the Ninth International Conference on Tangible,
Embedded, and Embodied Interaction. ACM, Stanford California USA, 181–188.
https://doi.org/10.1145/2677199.2680587

[70] Steve Ruiz. 2022. Tldraw. https://tldraw.com/
[71] Johnny Saldana. 2015. The Coding Manual for Qualitative Researchers. SAGE.
[72] Abhraneel Sarma, Alexander Kale, Michael Jongho Moon, Nathan Taback, Fanny

Chevalier, Jessica Hullman, and Matthew Kay. 2021. multiverse: Multiplexing
Alternative Data Analyses in R Notebooks. Technical Report. OSF Preprints.
https://doi.org/10.31219/osf.io/yfbwm type: article.

[73] Toby Schachman. 2012. Alternative programming interfaces for alternative
programmers. In Proceedings of the ACM international symposium on New ideas,
new paradigms, and refections on programming and software - Onward! ’12. ACM
Press, Tucson, Arizona, USA, 1. https://doi.org/10.1145/2384592.2384594

[74] D. A. Schön. 1992. Designing as refective conversation with the materials of
a design situation. Knowledge-Based Systems 5, 1 (March 1992), 3–14. https:
//doi.org/10.1016/0950-7051(92)90020-G

[75] Donald A. Schön. 2017. The Refective Practitioner: How Professionals Think in
Action. Routledge, United States.

[76] Richard Sennett. 2008. The Craftsman. Yale University Press, United Kingdom.
[77] Moushumi Sharmin and Brian P. Bailey. 2013. RefectionSpace: an interactive

visualization tool for supporting refection- on -action in design. In Proceedings
of the 9th ACM Conference on Creativity & Cognition. ACM, Sydney Australia,
83–92. https://doi.org/10.1145/2466627.2466645

[78] Paul Shen. 2021. natto.dev. https://natto.dev
[79] Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming Lan-

guages. Computer 16, 8 (Aug. 1983), 57–69. https://doi.org/10.1109/mc.1983.
1654471

[80] Ben Shneiderman. 2007. Creativity support tools: accelerating discovery and
innovation. Commun. ACM 50, 12 (Dec. 2007), 20–32. https://doi.org/10.1145/
1323688.1323689

[81] Sarah Sterman, Molly Jane Nicholas, and Eric Paulos. 2022. Towards Creative
Version Control. Proc. ACM Hum.-Comput. Interact. 6, CSCW2 (Nov. 2022), 25.
https://doi.org/10.1145/3555756

[82] Liz Stinson. 2021. Processing: the Software that Shaped Creative Cod-
ing. https://eyeondesign.aiga.org/processing-the-software-that-shaped-
creative-coding/ Section: Digital.

[83] Sara L. Su, Sylvain Paris, Frederick Aliaga, Craig Scull, Steve Johnson, and Frédo
Durand. 2009. Interactive Visual Histories for Vector Graphics. Technical Re-
port MIT-CSAIL-TR-2009-031. Massachusetts Institute of Technology, Computer
Science and Artifcial Intelligence Laboratory, Cambridge, MA.

[84] Blair Subbaraman and Nadya Peek. 2022. p5.fab: Direct Control of Digital Fab-
rication Machines from a Creative Coding Environment. In Designing Inter-
active Systems Conference. ACM, Virtual Event Australia, 1148–1161. https:
//doi.org/10.1145/3532106.3533496

[85] Michael Terry, Elizabeth D. Mynatt, Kumiyo Nakakoji, and Yasuhiro Yamamoto.
2004. Variation in element and action: supporting simultaneous development of
alternative solutions. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’04). Association for Computing Machinery, New
York, NY, USA, 711–718. https://doi.org/10.1145/985692.985782

[86] Maryam Tohidi, William Buxton, Ronald Baecker, and Abigail Sellen. 2006. Get-
ting the right design and the design right. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’06). Association for Computing
Machinery, New York, NY, USA, 1243–1252. https://doi.org/10.1145/1124772.
1124960

[87] Barbara Tversky. 2019. Mind in Motion: How Action Shapes Thought. Basic Books,
United States.

[88] April Yi Wang, Zihan Wu, Christopher Brooks, and Steve Oney. 2020. Cal-
listo: Capturing the "Why" by Connecting Conversations with Computational
Narratives. In Proceedings of the 2020 CHI Conference on Human Factors in Com-
puting Systems. Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3313831.3376740

[89] Nathaniel Weinman, Steven M. Drucker, Titus Barik, and Robert DeLine. 2021.
Fork It: Supporting Stateful Alternatives in Computational Notebooks. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
ACM, Yokohama Japan, 1–12. https://doi.org/10.1145/3411764.3445527

[90] Mikael Wiberg. 2014. Methodology for materiality: interaction design research
through a material lens. Personal and Ubiquitous Computing 18, 3 (March 2014),
625–636. https://doi.org/10.1007/s00779-013-0686-7

[91] Mikael Wiberg. 2018. The materiality of interaction: notes on the materials of
interaction design. The MIT Press, Cambridge, Massachusetts.

https://doi.org/10.1145/3313831.3376765
https://doi.org/10.1145/3313831.3376765
https://doi.org/10.1145/3411764.3445682
https://doi.org/10.1145/3411764.3445682
https://doi.org/10.1109/tvcg.2020.3028985
https://doi.org/10.1145/2317956.2318021
https://doi.org/10.1145/3325480.3325483
https://doi.org/10.7551/mitpress/9476.001.0001
https://doi.org/10.1587/transinf.2015edp7282
https://doi.org/10.1145/2460625.2460638
https://doi.org/10.1145/2460625.2460638
https://doi.org/10.1145/3025453.3025597
https://doi.org/10.1145/3490149.3501310
https://doi.org/10.1145/2702123.2702543
https://doi.org/10.1145/2702123.2702543
https://doi.org/10.1145/3173574.3174109
https://doi.org/10.1145/3173574.3174109
https://doi.org/10.1145/3266037.3266098
https://press.uchicago.edu/ucp/books/book/chicago/T/bo6035368.html
https://doi.org/10.1145/3170427.3185371
https://doi.org/10.1184/R1/6621917.v1
https://doi.org/10.1145/2047196.2047216
https://doi.org/10.1145/2677199.2680587
https://tldraw.com/
https://doi.org/10.31219/osf.io/yfbwm
https://doi.org/10.1145/2384592.2384594
https://doi.org/10.1016/0950-7051(92)90020-G
https://doi.org/10.1016/0950-7051(92)90020-G
https://doi.org/10.1145/2466627.2466645
https://natto.dev
https://doi.org/10.1109/mc.1983.1654471
https://doi.org/10.1109/mc.1983.1654471
https://doi.org/10.1145/1323688.1323689
https://doi.org/10.1145/1323688.1323689
https://doi.org/10.1145/3555756
https://eyeondesign.aiga.org/processing-the-software-that-shaped-creative-coding/
https://eyeondesign.aiga.org/processing-the-software-that-shaped-creative-coding/
https://doi.org/10.1145/3532106.3533496
https://doi.org/10.1145/3532106.3533496
https://doi.org/10.1145/985692.985782
https://doi.org/10.1145/1124772.1124960
https://doi.org/10.1145/1124772.1124960
https://doi.org/10.1145/3313831.3376740
https://doi.org/10.1145/3411764.3445527
https://doi.org/10.1007/s00779-013-0686-7

CHI ’23, April 23–28, 2023, Hamburg, Germany

[92] Moritz Wittenhagen, Christian Cherek, and Jan Borchers. 2016. Chronicler:
Interactive Exploration of Source Code History. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems. ACM, San Jose California
USA, 3522–3532. https://doi.org/10.1145/2858036.2858442

[93] YoungSeok Yoon and Brad A. Myers. 2015. Semantic zooming of code change his-
tory. In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). 95–99. https://doi.org/10.1109/VLHCC.2015.7357203

[94] Young Seok Yoon and Brad A. Myers. 2012. An exploratory study of backtracking
strategies used by developers. In 2012 5th International Workshop on Co-operative
and Human Aspects of Software Engineering (CHASE). IEEE, Zurich, Switzerland,
138–144. https://doi.org/10.1109/chase.2012.6223012

[95] Young Seok Yoon and Brad A. Myers. 2014. A demonstration of AZURITE:
Backtracking tool for programmers. In 2014 IEEE Symposium on Visual Languages

Rawn et al.

and Human-Centric Computing (VL/HCC). IEEE, Melbourne, Australia, 225–226.
https://doi.org/10.1109/vlhcc.2014.6883067

[96] Young Seok Yoon and Brad A. Myers. 2014. A longitudinal study of programmers’
backtracking. In 2014 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, Melbourne, Australia, 101–108. https://doi.org/10.
1109/vlhcc.2014.6883030

[97] Loutfouz Zaman, Wolfgang Stuerzlinger, Christian Neugebauer, Rob Woodbury,
Maher Elkhaldi, Naghmi Shireen, and Michael Terry. 2015. GEM-NI : A System
for Creating and Managing Alternatives In Generative Design. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM,
Seoul Republic of Korea, 1201–1210. https://doi.org/10.1145/2702123.2702398

[98] Zicarelli.D. 2002. Max/MSP. http://www.cycling74.com/products/maxmsp.html

https://doi.org/10.1145/2858036.2858442
https://doi.org/10.1109/VLHCC.2015.7357203
https://doi.org/10.1109/chase.2012.6223012
https://doi.org/10.1109/vlhcc.2014.6883067
https://doi.org/10.1109/vlhcc.2014.6883030
https://doi.org/10.1109/vlhcc.2014.6883030
https://doi.org/10.1145/2702123.2702398
http://www.cycling74.com/products/maxmsp.html

	Abstract
	1 Introduction
	2 Three Themes of Material Interaction
	2.1 Reciprocal Discovery of Goals and Materials
	2.2 Local Knowledge of Materials
	2.3 Annotation for Holistic Interpretation
	2.4 Material Interaction: Principles for Design

	3 Related Work
	3.1 Theories of Materiality and Cognition
	3.2 Material Interaction but not Version Control
	3.3 Version Control but not Material Interaction
	3.4 Version Control and Material Interaction

	4 System Description
	4.1 Instantiating Design Principles into Features
	4.2 Implementation

	5 Study Design
	6 Measuring and Identifying Material Interaction
	6.1 Measuring Continual Goal Reformation
	6.2 Measuring Contextual Exploration
	6.3 Measuring Holistic, Linked Annotation
	6.4 Qualitative Support for Material Interaction

	7 Discussion
	7.1 Giving Structure to Process
	7.2 Towards Practical Concepts for Material Interaction in Interfaces

	8 Limitations and Future Work
	9 Conclusion
	Acknowledgments
	References

